FLSEVIER

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Histamine H_3 and H_4 receptor affinity of branched 3-(1*H*-imidazol-4-yl)propyl *N*-alkylcarbamates

Dorota Łażewska ^a, Małgorzata Więcek ^a, Xavier Ligneau ^b, Tim Kottke ^c, Lilia Weizel ^c, Roland Seifert ^d, Walter Schunack ^e, Holger Stark ^c, Katarzyna Kieć-Kononowicz ^a,*

- ^a Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, ul. Medyczna 9, 30-688 Kraków, Poland
- ^b Bioprojet-Biotech, 4 rue du Chesnay Beauregard, BP 96205, 35762 Saint-Grégoire, France
- c Institute of Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 9, 60438 Frankfurt/Main, Germany
- ^d Institute of Pharmacology, Medical School of Hannover, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
- ^e Institute of Pharmacy, Free University of Berlin, Königin-Luise-Strasse 2+4, 14195 Berlin, Germany

ARTICLE INFO

Article history: Received 23 June 2009 Revised 30 September 2009 Accepted 1 October 2009 Available online 6 October 2009

Keywords: Histamine H₃ receptor Histamine H₄ receptor Imidazole derivatives

ABSTRACT

A series of imidazole-containing (non-)chiral carbamates were tested at human histamine H_3 receptor (H_3R). All compounds displayed K_i values below 100 nM. A trend for a stereoselectivity at human H_3R was observed for the chiral α -branched ligands. Selected compounds were also tested at human histamine H_4 receptor and showed moderate to weak affinities (118–1460 nM).

© 2009 Elsevier Ltd. All rights reserved.

Imidazole moiety is present in many biologically active compounds (for review see¹). One of the most important of them is histamine. Histamine exerts tremendous influence over a variety of physiological processes by the four known receptors subtypes: H₁, H₂, H₃ and H₄.

Histamine H₃ receptors (H₃Rs) are widely expressed in CNS and play the main role in many important processes. Nowadays, the current interest in the area of H₃R ligands (inverse agonists, antagonists) is focused on non-imidazole compounds (for review see²⁻⁷), whereas the first generation H₃R active structures contained the imidazole moiety (for review see⁸). These compounds were analogues of histamine with the 4-substituted imidazole ring. However, despite their high potency and clinical studies none of them have entered the market as a drug. The main drawback of these compounds was inhibition of numerous CYP450 enzymes^{9,10} (although recently some studies suggested the possibilities to minimize these activities¹¹), reduced oral bioavailability and poor brain penetration (e.g., thioperamide¹²). Actually, imidazole-based ligands like thioperamide, clobenpropit, and ciproxifan (Fig. 1) are mainly used as reference structures in a variety of preclinical animal models.

Despite that imidazole-containing ligands are further the subject of investigations and quite recently, Jablonowski et al. de-

scribed a series of N-methylimidazole-containing compounds—potent H_3R ligands with improved metabolic stability. (e.g., 1, Fig. 2)¹³

Histamine H_4 receptors (H_4Rs) are preferentially expressed on hematopoietic and immune cells (e.g., eosinophils, mast cells, macrophages) and play a role in immunological and inflammatory processes.¹⁴

The human H_4R is closely related to the human H_3R . These two proteins have a sequence identity of 31% and their homology in the transmembrane region is 54%. ¹⁵

Therefore, it is not surprising, that numerous imidazole-containing H_3R ligands have also significant affinity for the human H_4R (e.g., Table 1)¹⁶ and some of them (e.g., thioperamide, cloben-propit) have been used to characterize the H_4R . While the current medicinal chemistry efforts are concerned at finding more selective compounds, AstraZeneca continues to develop imidazole derivatives acting as dual H_3R and H_4R ligands (e.g., Fig. 3).¹⁷ These compounds are considered as potential drugs for the treatment of histamine H_4 mediated diseases especially asthma. Also, very recently, Igel et al. described N^G -alkanoyl-imidazolylpropylguanidines as high-affinity human H_3R antagonists/partial agonists and full H_4R agonists.¹⁸ For example, UR-PI294 with N^G -propionyl group, was tritiated, resulting the radioligand [3H]UR-PI294. 9 This radioligand is considered a valuable pharmacological tool for the determination of human H_3R and human H_4R affinities.

In this Letter, we describe human H_3R affinity of branched 3-(1H-imidazol-4-yl)-propyl N-alkylcarbamates (Scheme 1). Most

^{*} Corresponding author. Tel.: +48 12 620 55 81; fax: +48 12 620 55 96. E-mail address: mfkonono@cyf-kr.edu.pl (K. Kieć-Kononowicz).

Figure 1. Some reference imidazole-containing histamine H₃ receptor ligands.

H $_3$ R: human K $_i$ = 3 nM rat pA $_2$ = 8.0 human pA $_2$ = 9.2

 IC_{50} s > 10 mM for CYP: 1A2, 2C9, 2C19, 2D6 and 3A4

Figure 3. Structure of one of the compounds developed by AstraZeneca. ¹⁷

Figure 2. Structure and potency profile of
$$1.13$$

Table 1 Affinities of compounds 2-22 at human histamine H_3 and H_4 receptor

Compds	R	K_i^a (nM)	hH_3R K_i^b (nM)	hH₄R K₁ ^c (nM)	Selectivity ratio hH ₄ R/hH ₃ R
2	R,S	20 ± 5	49	nt ^d	
3	R	19 ± 5	12	290 ± 98	24
4	S	23 ± 5	31	nt ^d	
5	R,S	25 ± 4	21	nt ^d	
6	R	12±2	15	nt ^d	
7	S	18 ± 4	4.7 ± 0.9	118 ± 38	25
8	R,S	8.7 ± 2.9	29	695 ± 51	24
9	$R \sim$	19 ± 4	19	426 ± 147	22
10	S	12±5	42	nt ^d	
11	R,S	15 ± 5	8.3	162 ± 34	20
12	R,S	5.1 ± 1.9	13	123 ± 17	9
13	~~	nt ^d	13	nt ^d	
14	R,S	nt ^d	30	nt ^d	
					(

Table 1 (continued)

Compds	R	K_i^a (nM)	hH_3R K_i^b (nM)	hH_4R K_i^c (nM)	Selectivity ratio hH ₄ R/hH ₃ R
15	R,S	18 ± 4	52	nt ^d	
16	R	23 ± 8	41	636 ± 150	16
17	S	18 ± 3	74	1460 ± 240	20
18	R,S	22 ± 5	75	nt ^d	
19	R,S	nt ^d	37	779 ± 85	21
20	R,S	18 ± 5	91	nt ^d	
21	R	nt ^d	28 ± 3 ^e	nt ^d	
22	\S	$\mathrm{nt^d}$	43 ± 17 ^e	nt ^d	
Ciproxifan Clobenpropit Thioperamide			$46 \pm 4^{\rm f}$ 2.4 ± 0.6 ^{$\rm f$} 60 ± 12 ^{$\rm f$}	612 ± 32^{g} 4.3 ± 0.2^{g} 43 ± 3^{g}	13 1.8 0.7

- ^a [³H]histamine release from synaptosomes of rat cerebral cortex,²⁵ mean ± sem of at least three independent experiments.
- b [125 I]lodoproxyfan binding to membranes of CHO-K1 cells expressing the human H_3R , 26 data from a single experiment with each concentrations tested at least in triplicate, except for **7** with mean ± sem of three independent experiments.
- c [3 H]Histamine binding to membranes of Sf9 cells expressing the human H₄R, co-expressed with G α i2 and G $\beta_1\gamma_2$ subunits, 27,28 mean \pm sem of at least three independent experiments.
- d Not tested.
- $^{\rm e}$ [125 I]lodoproxyfan binding to membranes of HEK-293 cells expressing the human $^{\rm H}_3$ R, $^{\rm 16}$ mean $^{\rm t}$ sem of three independent experiments.
- f [125 I]lodoproxyfan binding to membranes of CHO-K1 cells expressing the human H_3R , data from Ref. 26.
- g [3H]Histamine binding to membranes of HEK-293 cells expressing the human H₄R, data from Ref. 16.

R-OH

(a)

$$R-NH_2 \times HCI$$
 $R-NH_2 \times HCI$
 R

Scheme 1. General synthesis of carbamates. Reagents and conditions: (a) 48% HBr, H₂SO₄ (concd); (b) potassium phthalimide, K₂CO₃, benzyltriethylammonium chloride, acetone 6 h reflux; (c) phthalimide, DEAD, triphenylphosphine, THF, 3 days rt; (d) (i) NH₂–NH₂, EtOH, 15 min reflux; (ii) HCl, EtOH; (e) ethyl acetate, catalytic amount of charcoal, 4–5 h reflux; (f) acetonitrile, 4–5 h reflux.

of these compounds had been previously studied in a functional test on synaptosomes of rat cortex and showed high histamine $\rm H_3R$ affinity. Now some of the reported structures were also tested at the human $\rm H_4R$. Results are collected in Table 1.

The synthetic route for these carbamates is illustrated in Scheme 1.²² Commercially available or prepared amines were converted to the corresponding isocyanates by the reaction with an excess of diphosgene. Then, subsequently isocyanates reacted in

acetonitrile with 3-(1*H*-imidazol-4-yl)-propanol hydrochloride to furnish the desired carbamates **2–22**. Non-commercially available amines were prepared from the corresponding alcohols as depicted in Scheme 1. Amines used to synthesize compounds **8**, **11** and **12** were obtained from the alkyl bromides via conventional Gabriel synthesis under phase-transfer conditions. Subsequently, *N*-alkylphthalimides by means of hydrazinolysis gave the desired amines, isolated as hydrochlorides. Alkyl bromides for **8**, **11** and

12 were synthesized by standard procedures (48% HBr in concentrated H_2SO_4). Precursor *N*-alkylphthalimides for carbamates **9**, **10**, **13**, **14** and **22** were prepared via modified Gabriel procedure reported by Mitsunobu.²⁴ These reactions were carried out at room temperature in absolute THF in the presence of DEAD and triphenylphosphine.

All compounds reported here revealed high affinities for human H_3R (K_i values from 4.7 to 91 nM). The best acceptable for hH_3R is the methyl substituent in the β position (**7** and **11**). It looks as if the ethyl group in this position (**19**) is also tolerated. However, the lack of the methyl analogue in the hexyl series did not let us confirm that.

A trend for a stereoselectivity at human H_3R was also observed for the chiral α -branched ligand. Indeed, the R-enantiomers (3, 9, 16 and 21) were slightly more potent than the corresponding S-enantiomers (4, 10, 17 and 22). In the R-eutomer series, the alkyl chain consisting of three to five carbons (compare 3, 6 and 9) was well tolerated by human H_3R . A six-carbon chain (compare 3, 6 and 9 with 16) was detrimental for H_3R binding and caused about threefold lost of in vitro affinity. Surprisingly, the seven-carbon compound 21 had again a better affinity than the six-carbon analogue 16.

In the series of the pentyl derivatives (**8–14**), the methyl group was introduced into the different positions (α , β , γ and δ) and the dimethyl compound (**14**, α and δ position) was also prepared. Compounds with the methyl substituent in the β , γ or δ position were about twice more potent than α -branched ones (compare **11**, **12** and **13** with **8**). Interestingly, the introduction of a second methyl group in the δ position (**14**) did not influence the affinity when comparing with **8**, indicating that α -substituent determinated affinity and prevented the optimal interaction with the H_3R .

Comparing the results with those previously obtained in a functional test in rat cerebral cortex, 20,21 it is seen that most of the investigated compounds displayed lower or comparable affinity at the human H_3R . Surprisingly, **7** and **11** are more potent at the human H_3R than at the rat cortex (**7**: hK_i ; **4**.7 nM, rat K_i : 18 nM; **11**: hK_i ; **8**.3 nM, rat K_i : 15 nM).

Some of the compounds (**3**, **7–9**, **11**, **12**, **16**, **17** and **19**) were tested at human H_4R .^{27,28} These studies revealed their moderate to weak affinities (hK_i : 118–1420 nM). The most potent was **7** (hK_i : 118 nM), also very active at human H_3R (hK_i : 4.7 nM). These chosen compounds (**3**, **7–9**, **11**, **12**, **16**, **17** and **19**) had some selectivity for the H_3R (from 9 to 25-fold) over the H_4R , in some cases even better than the reference compounds (Table 1).

In summary, we investigated a series of branched 3-(1H-imidazol-4-yl)propyl N-alkylcarbamates which were found to be potent human H_3R ligands. Additional pharmacological evaluation of nine selected compounds showed that these structures, as most imidazole-containing ligands, displayed also affinity for the H_4R . However, our present and unpublished results indicate that selectivity for the H_3R (high affinity) among imidazole-containing derivatives over the H_4R (weak or lack of affinity) is possible to achieve.

Acknowledgments

This work was supported by the Deutscher Akademischer Austauschdienst (D/06/25529), Germany, the Ministry of Scientific Research and Information Technology, Poland DAAD/55/2007 Program and by the 'LOEWE Lipid Signalling Forschungszentrum' (LiFF, Frankfurt/Main). D.L., M.W., T.K., L.W., R.S., H.S. and K.K.K. are affiliated with COST Action BM0806.

References and notes

- 1. de Luca, L. Curr. Med. Chem. 2006, 13, 1.
- Celanire, S.; Wijtmans, M.; Talaga, P.; Leurs, R.; de Esch, I. J. P. Drug Discovery Today 2005, 10, 1613.

- 3. Esbenshade, T. A.; Fox, G. B.; Cowart, M. D. Mol. Interventions 2006, 6, 77.
- 4. Wijtmans, M.; Leurs, R.; de Esch, I. J. P. Expert Opin. Investig. Drugs 2007, 16, 967.
- 5. Berlin, M.; Boyce, C. W. Expert Opin. Ther. Patents 2007, 17, 675.
- 6. Sander, K.; Kottke, T.; Stark, H. Biol. Pharm. Bull. 2008, 31, 2163.
- Celanire, S.; Lebon, F.; Stark, H. In The Third Histamine H₃ Receptor: Selective Ligands as Potential Therapeutic Agents in CNS Disorders; Vohora, D. S., Ed.; Taylor & Francis CRC Press: Boca Raton, Fla.; 2009; pp 103–165.
- 8. Stark, H.; Kathmann, M.; Schlicker, E.; Schunack, W.; Schlegel, B.; Sippl, W. Mini-Rev. Med. Chem. 2004, 4, 965.
- 9. Murray, M. Drug Metab. Rev. 1987, 18, 55.
- 10. Yang, R.; Hey, J.; Aslanian, R.; Rizzo, C. Pharmacology 2002, 66, 128.
- Berlin, M.; Ting, P. C.; Vaccaro, W. D.; Aslanian, R.; McCormick, K. D.; Lee, J. F.; Albanese, M. M.; Mutahi, M. W.; Piwinski, J. J.; Shih, N.-Y.; Duguma, L.; Solomon, D. M.; Zhou, W.; Sher, R.; Favreau, L.; Bryant, M.; Korfmacher, W. A.; Nardo, C.; West, R. E., Jr.; Anthes, J. C.; Williams, S. M.; Wu, R.-L.; She, S. H.; Rivelli, M. A.; Corboz, M. R.; Hey, J. A. Bioorg. Med. Chem. Lett. 2006, 16, 989.
- Chadha, H. S.; Abraham, M. H.; Mitchell, R. C. Bioorg. Med. Chem. Lett. 1994, 4, 2511.
- Jablonowski, J. A.; Ly, K. S.; Bogenstaetter, M.; Dvorak, C. A.; Boggs, J. D.; Dvorak, L. K.; Lord, B.; Miller, K. L.; Mazur, C.; Wilson, S. J.; Lovenberg, T. W.; Carruthers, N. I. Bioorg. Med. Chem. Lett. 2009, 19, 903.
- 14. Zampeli, E.; Tiligada, E. Br. J. Pharmacol. 2009, 157, 24.
- de Esch, I. J. P.; Thurmond, R. L. J. A.; Jongejan, A.; Leurs, R. Trends Pharmacol. Sci. 2005. 26, 462.
- Gbahou, F.; Vincent, L.; Humbert-Claude, M.; Tardivel-Lacombe, J.; Chabret, C.; Arrang, J. M. Br. J. Pharmacol. 2006, 147, 744.
- 17. Burns, S.; Hamley, P. Patent WO2005014579, Feb. 17, 2005.
- Igel, P.; Schneider, E.; Schnell, D.; Elz, S.; Seifert, R.; Buschauer, A. J. Med. Chem. 2009. 52, 2623.
- Igel, P.; Schnell, D.; Bernhardt, G.; Seifert, R.; Buschauer, A. Chem. Med. Chem. 2009, 4, 225.
- Sasse, A.; Kieć-Kononowicz, K.; Stark, H.; Motyl, M.; Reidemeister, S.; Ganellin, C. R.; Ligneau, X.; Schwartz, J.-C.; Schunack, W. J. Med. Chem. 1999, 42, 593.
- 21. Kieć-Kononowicz, K.; Więcek, M.; Sasse, A.; Ligneau, X.; Elz, S.; Ganellin, C. R.; Schwartz, J. C.; Stark, H.; Schunack, W. Pharmagia 2000, 55, 240
- Schwartz, J. C.; Stark, H.; Schunack, W. *Pharmazie* **2000**, *55*, 349. Compounds **2–12** and **14–20** were described previously.^{20,21} Compounds **13**, **21** and **22** were prepared as described by Sasse et al.²⁰ The products were obtained as colorless oils and crystallized as hydrogen maleates in EtOH/Et2O. Compound 13. Starting from 4-methylpentan-1-ol; Methylpentyl)phthalimide, yellow oil (yield: 71%); 4-Methylpentanamine hydrochloride, white solid, Mp 197 °C; yield: 72%; 3-(1-H-Imidazol-4yl)propyl N-(4-methylpentyl)carbamate hydrogen maleate, white solid; Mp 81–82 °C; yield: 15%. ¹H NMR [DMSO₂- d_6]: δ = 8.83 (s, 1H, Im-2-H), 7.37 (s, 1H, Im-5-H), 7.06 (t, J = 5.6 Hz, 1H, CONH), 6.04 (s, 2H, Mal), 3.96 (t, J = 6.5 Hz, 2H Im···CH₂-O), 2.93 (q, J = 6.4 Hz, 2H, N-CH₂), 2.66 (t, J = 7.6 Hz, 2H, Im-CH₂), 1.87 (m, 2H, Im-CH₂-CH₂), 1.51(m, 1H, -CH(CH₃)₂), 1.38 (m, 2H, -CH₂-CH₂- $CH(CH_3)_2$), 1.12 (m, 2H, $-CH_2-CH(CH_3)_2$), 0.84 (d, J = 6.6 Hz, 6H, $(CH_3)_2$); IR 1): 1694s (ν [C=0]); MS m/z (%) 253 ([M⁺], 8), 109 ([Im-(CH₂) (KBr) (cm 32), 108 (100), 107 (38), 95 ([Im-(CH₂)₂*], 67), 82 (22), 81 ([Im-(CH₂)₃*], 55), 80 (11), 54 (16), 41 (18). Anal. Calcd for C₁₃H₂₃N₃O₂·C₄H₄O₄·0.5H₂O (M_i: 378.30): C, 53.98; H, 7.46; N, 11.11. Found: C, 54.23; H, 7.10; N, 11.13.(b) Compound 21: Starting from (*R*)-(–)-octan-2-amine (Lancaster). White solid, Mp 105–107 °C; yield: 30%; $[\alpha]_D$: -2.77 (c 1.0, EtOH); 1 H NMR [DMSO- d_6]: δ = 8.90 (s, 1H, Im-2-H), 7.40 (s, 1H, Im-5-H), 6.96 (d, I = 8.3 Hz, 1H, CONH), 6.06 (s, 2H, Mal), 3.96 (t, J = 6.6 Hz, 2H Im···CH₂-O), 3.70-3.38 (br s, 1H, N-CH + H₂O), 2.69 (t, J = 7.4 Hz, 2H, Im-CH₂), 1.90 (t, I = 7.4 Hz, 2H, Im-CH₂-CH₂), 1.34-1.24 (m, 10H, -(CH₂)₅), 1.02 (d, J = 6.6 Hz, 3H, $-CH - CH_3$), 0.82 (t, J = 6.3 Hz, 3H, $CH_2 - CH_3$); IR (KBr) (cm⁻¹): 1689s (ν [C=0]); MS m/z (%) 281 ([M⁺], 4), 113 (46), 109 ([Im-(CH₂)₃+], 37), 108 (74), 107 (23), 95 ([Im-(CH₂)₂+], 70), 82 (24), 81C, 55.48; H, 7.97; N, 10.22.(c) Compound 22: Starting from (R)-(-)-octan-2-ol (Aldrich); N-(S)-(+)-2-octylphthalimide, colorless oil; yield: 79%; $[\alpha]_D$: +29.48 (c 3.0, EtOH); (S)-(+)-octan-2-amine hydrochloride, white solid, Mp 85–86 °C; yield: 36%; $[\alpha]_D$: -4.42 (c 1.5, MeOH); 3-(1-H-Imidazol-4-yl)propyl) N-[(S)-(+)-2-octyl]carbamate hydrogen maleate, white solid; Mp 108–110 °C; yield: 7%; $[\alpha]_D$: +2.93 (c 1.0, EtOH); ¹H NMR [DMSO- d_6]: δ = 8.85 (s, 1H, Im-2-H), 7.40 (s, 1H, Im-5-H), 6.91 (d, J = 8.3 Hz, 1H, CONH), 6.02 (s, 2H, Mal), 3.93 (t, J = 6.6 Hz, 2H Im···C H_2 -O), 3.42–3.30 (br s, 1H, N-CH + H_2 O), 2.65 (t, J = 7.4 Hz, 2H, Im- CH_2), 1.86 (qu, J = 7.4 Hz, 2H, $Im-CH_2-CH_2$), 1.31–1.16 (m, 10H, $-(CH_2)_5$), 0.98 (d, J = 6.6 Hz, 3H, -CH- CH_3), 0.82 (t, \bar{J} = 6.1 Hz, 3H, CH₂- CH_3); IR (KBr) (cm⁻¹): 1689s (v [C=O]); MS m/z (%) 281 ([M*], 12), 109 ([Im-(CH₂)₃*], 34), 108 (100), 107 (22), 95 ([Im-(CH₂)₂*], 56), 82 (23), 81 ([Im-CH₂*], 41), 72 (14), 54 (17), 45 (16). Anal. Calcd for $C_{15}H_{27}N_3O_2\cdot C_4H_4O_4\cdot 0.5H_2O$ (M_r : 406.48): C, 56.14; H, 7.94; N, 10.34. Found: C, 56.27; H, 7.89; N, 10.13.
- 23. Kieć-Kononowicz, K.; Zejc, A. Polish J. Chem. **1984**, 58, 761.
- 24. Mitsunobu, O. Synthesis 1981, 1.
- 25. Garbarg, M.; Arrang, J. M.; Rouleau, A.; Ligneau, X.; Trung Tong, M. D.; Schwartz, J. C.; Ganellin, C. R. J. Pharmacol. Exp. Ther. 1992, 263, 304.
- Ligneau, X.; Morisset, S.; Tardivel-Lacombe, J.; Gbahou, F.; Ganellin, C. R.; Stark, H.; Schunack, W.; Schwartz, J.-C.; Arrang, J.-M. Br. J. Pharmacol. 2000, 131, 1247.
- 7. Schneider, E. H.; Schnell, D.; Papa, D.; Seifert, R. Biochemistry 2009, 48, 1424.
- Tanrikulu, Y.; Proschak, E.; Werner, T.; Geppert, T.; Todoroff, N.; Klenner, A.; Kottke, T.; Sander, K.; Schneider, E.; Seifert, R.; Stark, H.; Clark, T.; Schneider, G. Med. Chem. Med. 2009, 4, 820.